
Summer School on Impact Evaluation 

Statistics Boot-Camp  

September 9th 2017 

 Instructor: Professor Gaia Narciso 
Email: narcisog@tcd.ie 



Trinity College Dublin, The University of Dublin 

TIME: Trinity Impact Evaluation Unit 

 Founded in 2015 

 8 members 

 Partnership with Irish Aid 

 Projects in various countries, e.g. India, Zambia, Uganda, Kenya, 
Senegal, Vietnam. 

Our vision is to provide strong evidence on what works, so that better 
investment can be made.  
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Trinity College Dublin, The University of Dublin 

Summer School Instructors 

• Professor Laura Camfield (University of East Anglia) 

• Professor Michael King (TCD and TIME) 

• Professor Tara Mitchell (TCD and TIME) 

• Professor Gaia Narciso (TCD and TIME) 
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Trinity College Dublin, The University of Dublin 

Contact Info 

Instructor: Gaia Narciso 

Email: narcisog@tcd.ie 

 

Teaching Assistant: Margaryta Klymak 

Email: klymakm@tcd.ie  
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Trinity College Dublin, The University of Dublin 

Readings 

 

Core: 

Gujarati, D. and D. Porter (2009), Basic Econometrics, 5/e, McGraw-Hill. 

Wooldridge, J. (2009), Introductory Econometrics: A Modern Approach, 
6/e, Cengage. 

 

Supplementary: 

Angrist, J. and Pischke, J. (2009), Mostly Harmless Econometrics, 
Princeton University Press. 
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Trinity College Dublin, The University of Dublin 

Stats Boot Camp - Schedule 

9am-9.15am: Registration 

9.15am-11am: Topic 1 - Statistical Review 

11am-11.15am: Coffee Break 

11.15am-12.45pm: Topic 1 - Statistical Review 

12.45pm-13.30pm: Lunch Break 

13.30pm-14.30pm: Topic 2 - Linear Regression Model 

14.30pm-15.30pm: Topic 3 - Statistical Inference  

15.30pm-15.45pm: Coffee Break 

15.45pm-17pm: Lab session (AP0.12) 
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Trinity College Dublin, The University of Dublin 

Road Map 
Topic 1: Statistical Review 

i. Random Variables and their Probability Distribution 

ii. Joint distributions, Conditional distributions and Independence 

iii. Features of Probability Distributions 

iv. Features of Joint and Conditional Probability Distributions 

v. Populations, Parameters and Random Sampling 

vi. Estimators and Estimates 

vii. Finite Sample Properties of Estimators 

viii. Asymptotic Properties of Estimators 

ix. Interval Estimation and Confidence Intervals 

x. Hypothesis Testing 
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Trinity College Dublin, The University of Dublin 

Road map 

Topic 2: The Linear Regression Model 

i. The Simple Regression Model 

ii. Ordinary Least Squares (OLS) Estimation 

iii. Properties of OLS 

iv. Goodness of Fit 

v. The Multiple Regression Model 

vi. Model Specification 

vii. Dummy Variables in Regression Analysis 

Topic 3: Statistical inference 

 

 

8 



Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

1.  Random Variables and their Probability Distribution 

– A random variable is a variable whose value is a numerical outcome of a 
random phenomenon. 

 

– Denoted by uppercase letters (e.g., X ) 

 

– Values of the random variable are denoted by corresponding lowercase 
letters 

 

– Corresponding values of the random variable:  
x1, x2, x3, . . .  
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

1.  Random Variables and their Probability Distribution 

– Random variables may be classified as: 

 

• Discrete: The random variable assumes a countable number of 
distinct values 

 

• Continuous: The random variable is characterized by (infinitely) 
uncountable values within any interval 

 

– Every random variable is associated with a probability distribution that 
describes the variable completely 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

1.  Random Variables and their Probability Distribution 

– A random variable is a variable whose value is a numerical outcome of a 
random phenomenon. 

– A discrete random variable is one which takes a finite number of values 

– All possible outcomes are summarized in what is known as the 
probability distribution 

– Example: Suppose X is the number of free throws scored by a basketball 
player out of two attempts so that  

 Suppose the probability distribution of X is given by 

  

 a. Calculate the probability that the player makes at least one free throw  

 b. Draw the pdf of X 

 0,1,2X 

     0 0.2, 1 0.44, 2 0.36f f f  
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

1. Random Variables and their Probability Distribution 

 

– A continuous random variable is characterized by (infinitely) 
uncountable values within any interval 

– A continuous random variable takes on so many possible values that it 
cannot be matched to a positive integer 

– Unlike with discrete RVs, continuous RVs have an infinite number of 
potential outcomes 

– With continuous RVs, we deal with intervals, not outcomes: hence 
probability density function [PDF] 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

1. Random Variables and their Probability Distribution 

 

– With continuous RVs, we deal with intervals, not outcomes 

– Hence probability density function [PDF] 

– A PDF, f(x), of a continuous RV describes the relative likelihood that X 
assumes a value within a given interval 

 

– Example: 

• X: Length of time that a user spends on a webpage before clicking on a link or 
leaving the page.  

• The probability that X lies between 15 seconds  and 30 seconds is given by 
the area under the probability density function 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

1. Random Variables and their Probability Distribution 

• “Normal Distribution” closely approximates the probability distribution 
of a wide range of real-world RVs – examples include: 

• Rainfall 

• Biology: height, weight, skin area of many animals (often after a ‘log 
transformation’) 

• Standardized test results (e.g. SAT scores) 

• Financial variables (but this can be contested) 

• The cornerstone of statistical inference 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

1. Random Variables and their Probability Distribution 

– The normal distribution is… 

• Symmetric 

• Bell-shaped and asymptotic: tail gets ever closer to (without 
touching) the axis 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

2.  Joint Distributions, Conditional Distributions and 
Independence 

– The joint probability density function of two variables (Y,X) can be defined as: 

 

 

– In econometrics we are interested in how one random variable is related to 
another – conditional distribution of Y given X: 

 

 

– The symbol “ | ” means “given” - in other words, whatever follows “ | ” has 
already occurred 

 

– If Y and X are independent: 

 , , ( , )Y Xf y x P Y y X x  

   | | |Y Xf y x P Y y X x  

   | |Y X Yf y x f y
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

3.  Features of Probability Distributions 

 

 

• Expected Value, Population mean 

• Variance 

• Standard Deviation 

• Covariance 

• Correlation 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

3.  Features of Probability Distributions 

Expected Value: 

– The expected value of a discrete R.V. Y is the weighted average of all 
possible values of Y where the weights are determined by the 
probability distribution.  

– The expected value is called the population mean 

 

 

 

 

– Example:  

– Properties of expectations   

  1 1 2 2

1

(Y ) (Y ) .... (Y ) (Y )
k

K k j j

j

E Y y prob y y prob y y prob y y prob y m


         
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Trinity College Dublin, The University of Dublin 

  ccE 

    cYaEcaYE 

 naaa ,.....,, 21
 nYYY ,.....,, 21

       nnnn YEaYEaYEaYaYaYaE  ......... 22112211

 









 n

i

ii

n

i

ii YEaYaE
11

Properties of Expectations: 

 

E1: For any constant c,  

E2: For any constants a and c,  

E3: If   are constants and  

are random variables. 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

3. Features of Probability Distributions 

Variance: 

– Measures how far away a random variable Y is from its population 
mean: 

 

 

– This can also be written as: 

 

 

– Properties of variances 

      
2 2 2Var Y E Y E Y E Y m        

  

    22 m YEYVar
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Trinity College Dublin, The University of Dublin 

  0V c 

   YVacaYV 2

Properties of Variances 

 V1: For any constant c: 

V2: For any constants a and c 

V3: For two random variables X and Y and constants a and b  

       2 2 2 ,V aX bY a V X b V Y abCov X Y   

V4: If   naaa ,.....,, 21  are constants and   nYYY ,.....,, 21

are uncorrelated random variables then 

 
       2 2 2

1 1 2 2 1 1 2 2..... .....n n n nVar a Y a Y a Y a Var Y a Var Y a Var Y     
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

3. Features of Probability Distributions 

Standard Deviation: 

 

– Positive square root of the variance of the random variable: 

 

      YVarYsd
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

3. Features of Probability Distributions 

Normal Distribution 

– The normal distribution is completely described by two parameters:  
and  

– The population mean describes the distribution’s central location 

– The population variance describes the distribution’s dispersion 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

Example: employee age across three industries 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

3. Features of Probability Distributions 

Standardizing a Random Variable: 

– Given a r.v. Y, a new r.v. can be defined by subtracting the mean and 
dividing by the standard deviation 

 

 

– The standard normal distribution is a special case, where: 

• Mean is equal to zero (E(Z) = 0) 

• Standard deviation is equal to one (SD(Z) = 1) 



m


Y
Z
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

4. Features of Joint and Conditional Probability Distributions 

Covariance: 

– Defines the relationship between two random variables, Y and X. It tells 
us the extent to which the two variables move in the same direction: 

 

 

 

– Properties of Covariance: 

 COV1: If Y and X are independent then 

 COV2: For any constants 

 

 COV3: 

            (Cauchy-Swartz Inequality)    

        
    YXXY XYE

XEXYEYEXYCov

mm 

,

  0, XYCov

:,,, 2211 baba

   XYCovaabXabYaCov ,, 212211 

Covariance 

between two 

r.v.s depends 

on the units of 

measurement 
     XsdYsdXYCov |,|
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

4.  Features of Joint and Conditional Probability Distributions 

Correlation: 

– Measures the strength of the relationship between two random 
variables. It does not depend on the units of measurement: 

 

 

 

 
 

    YX

XY

YX

XsdYsd

XYCov
XYCorr 






,
,
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

4. Features of Joint and Conditional Probability Distributions 

Conditional Expectation 

– Summarises the relationship between Y and X using the conditional mean 
of Y given X 

 

 

  

– Weighted average of all possible values of Y, taking account of the fact 
that X takes on a particular value 

 

  

– Reminder:                                             is the conditional probability distribution  

    


m

j
jXYj xXyfyxXYE

1
| ||
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

4.  Features of Joint and Conditional Probability Distributions 

– Properties of Conditional Expectations 

– CE1: 

 

– CE2: 

 

– CE3: If Y and X are independent then:  

 

– CE4: The Law of Iterated Expectations: 

 

– CE5: If           then    

    YfYYfE |

         E f X Y g X | X f X E Y | X g X    

   YEXYE |

    YEXYEEX |

   YEXYE |   0, XYCov
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

5. Populations, Parameters and Random Sampling 

 

– Use statistical inference to learn something about a population 

– Population: Complete group of agents, e.g. the population of students 
studying Economics at TCD 

– Typically only observe a sample of data 

– Random sampling: Drawing random samples from a population 

– Know everything about the distribution of the population except for one 
parameter 

– Use statistical tools to say something about the unknown parameter 

• Estimation and hypothesis testing 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

6.  Estimators and Estimates: 

 

Population: consists of all items of interest 

– The Population Parameter is unknown 

 

 

Sample: a subset of the population 

– The Sample Statistic is calculated from sample and used to make 
inferences about the population (and its parameters) 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

6.  Estimators and Estimates: 

– Given a random sample drawn from a population distribution that 
depends on an unknown parameter , an estimator of   is a rule that 
assigns each possible outcome of the sample a value of  

– Examples: 

• Estimator for the population mean 

• Estimator for the variance of the population distribution 

– An estimator is given by some function of the RVs 

– This yields a (point) estimate  

– Distribution of estimator is the sampling distribution 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

6.  Estimators and Estimates: 

 

 

– Estimator: a statistic used to estimate a population parameter; e.g. the 
sample mean is a RV which is an estimator of μ, the population 
parameter 

– Estimate: a particular value of the estimator; e.g. the mean of a given 
sample 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

6.  Estimators and Estimates 

 

 

• Each sample drawn from a population produces its own estimate of 
μ, i.e. its mean  

• Take a given sample size, n, – each sample of that size will have its 
own mean 

• Therefore the sample mean has its own probability distribution 

‒ This distribution is called ‘the sampling distribution of the mean’ 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

7. Properties of Estimators: 

 

A Point Estimator should be… 

Unbiased 

An estimator is unbiased if its expected value equals the unknown 
population parameter being estimated 

Efficient 

An unbiased estimator is efficient if its standard error is lower than that of 
other unbiased estimators 

Consistent 

An estimator is consistent if it approaches the unknown population 
parameter being estimated as the sample size grows larger 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

7.  Finite Sample Properties of Estimators: 

 

Unbiasedness 

  

An estimator      of   is unbiased if                    for all values of   

 i.e., on average the estimator is correct 

 

 

  

   ˆE̂
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

7.  Finite Sample Properties of Estimators: 

Efficiency 

• What about the dispersion of the distribution of the estimator? i.e., 
how likely is it that the estimate is close to the true parameter? 

• Useful summary measure for the dispersion in the distribution is the 
sampling variance. 

• An efficient estimator is one which has the least amount of 
dispersion about the mean i.e. the one that has the smallest 
sampling variance 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

8.  Asymptotic Properties of Estimators 

– How do estimators behave if we have very large samples – as n 
increases to infinity? 

 

 

Consistency 

 How far is the estimator likely to be from the parameter it is estimating 
as the sample size increases indefinitely. 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

8.  Asymptotic Properties of Estimators 

– Asymptotic Normality 

  

 An estimator is said to be asymptotically normally distributed if its 
sampling distribution tends to approach the normal distribution as the 
sample size increases indefinitely. 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

9. Interval Estimation and Confidence Intervals 

 

– How do we know how accurate an estimate is? 

 

 

– A confidence interval estimates a population parameter within a range 
of possible values at a specified probability, called the level of 
confidence, using information from a known distribution – the standard 
normal distribution 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

9. Interval Estimation and Confidence Intervals 

 

– A Confidence Interval (CI) provides a range of values that, with a certain 
level of confidence, contains the population parameter of interest 

• If we took many samples of the same size from a population with 
mean µ and calculated a confidence interval for each sample, we 
would find that µ lies within 95% of the intervals 

– Also referred to as an “interval estimate” 

– CIs are constructed around the point estimate, ± the margin of error 

– Margin of error accounts for the variability of the estimator and the 
desired confidence level of the interval 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

9. Interval Estimation and Confidence Intervals 

– Consider a normally distributed RV, Y 

– Two key summary statistics (“moments”) are μ, its expected value, and 
σ, its SD 

– Remember, we can convert any normally distributed RV into standard 
normal 

 

 

 

– We would like to build a confidence interval for μ 

– For now, we assume that σ is known 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

9. Interval Estimation and Confidence Intervals 

The standard normal distribution is a special case, where: 

– Mean (m) is equal to zero (E(Z) = 0) 

– Standard deviation () is equal to one  
(SD(Z) = 1) 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

9. Interval Estimation and Confidence Intervals 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

9. Interval Estimation and Confidence Intervals 

• We will now construct a level C confidence interval for the mean m  
of a population when the data are a sample of size n.  

• The construction is based on the sampling distribution of the 
sample mean  

• To construct a level C confidence interval we first identify the central 
C area under a Normal curve 

• We must find the number z* such that any Normal distribution has 
probability C within the ± z* standard deviations of its mean 

• All Normal distributions have the same standardized form. We can 
obtain everything we need from the same standard Normal curve 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

9. Interval Estimation and Confidence Intervals 
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Practical use of z: z* 

 z* is related to the chosen 

confidence level C. 

 C is the area under the standard 

normal curve between −z* and z*. 

Example: For an 80% confidence 

level C, 80% of the normal curve’s  

area is contained in the interval. 

 

x  z * n

The confidence interval is thus: 



Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

9. Interval Estimation and Confidence Intervals 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

9. Interval Estimation and Confidence Intervals 

– Let {Y1,Y2,……,Yn} be a random sample from a population with a normal 
distribution with mean μ and variance σ2: Yi~N(μ,σ2) 

 The distribution of the sample average will be: 

 

– Standardising:  

 

– Using what we know about the standard normal distribution we can 
construct a 95% confidence interval: 

 

 nNY 2,~ m

 1,0~ N
n

Y



m

95.096.196.1Pr 

















n

Y



m
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 
9. Interval Estimation and Confidence Intervals 

– Re-arranging: 

1~ 


nt

ns

Y m
 

21
2

11

1








 






n

i
i YY

n
s

95.096.196.1Pr 









n
Y

n
Y


m



What if σ unknown? 

An unbiased estimator of σ 

95% confidence interval given by: 









 

n

s
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n

s
tY nn 2,12,1 , 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 

 

– Example: 

 Given the sample data: 

 

  

 

Calculate the 99% confidence interval estimate of the true mean. 

 

 

 

          is the critical value from the t-distribution.  
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 
10. Hypothesis Testing 

 

• Hypothesis tests resolve conflicts between two competing 
hypotheses 

• In any hypothesis test, we need to define: 

‒ H0, the null hypothesis: the presumed default state of nature or status 
quo 

‒ HA, the alternative hypothesis: a contradiction of the default state of 
nature or status quo 

• We conduct hypothesis tests to determine if sample evidence 
contradicts H0 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 
10. Hypothesis Testing 

 

On the basis of sample information, we either… 

1. “Reject the null hypothesis” 

– Sample evidence is inconsistent with H0 

2. “Do not reject the null hypothesis” 

– Sample evidence is not inconsistent with H0 

We do not have enough evidence to “accept” H0 

– This is really important! 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 
10. Hypothesis Testing 

• H0, the null hypothesis, states the status quo 

• HA, the alternative hypothesis, states whatever we wish to establish, 
contesting the status quo 

In a two-tailed test, H0 can be reject on either size of its hypothesised value 

Where the hypothesis test is about the population average (or proportion), this 
will be:  
       H0: m = m0 versus HA: m ≠ m0 

 

In a one-tailed test, H0 can only be rejected on one side of the parameter’s 
hypothesized value 

Where the hypothesis test is about the population average, this will be:  
 H0: m < m0 versus HA: m > m0 (right-tail test) 
 H0: m > m0 versus HA: m < m0 (left-tail test) 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 
10. Hypothesis Testing 

Two-tail test 

The “≠” symbol in HA indicates that both tail areas of the distribution will be used 
to make the decision regarding the rejection of H0 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 
10. Hypothesis Testing 

One-tail test 

In a one-tailed test, H0 can only be rejected on one side of the 
parameter’s hypothesized value 

Where the hypothesis test is about the population average, this will 
be:  
 H0: m < m0 versus HA: m > m0 (right-tail test) 
 H0: m > m0 versus HA: m < m0 (left-tail test) 
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Trinity College Dublin, The University of Dublin 

Topic 1: Statistical Review 
10. Hypothesis Testing 

One-tail test 

Note that the inequality in HA determines which tail area will be used to make the 
decision regarding the rejection of H0  
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Topic 1: Statistical Review 
10. Hypothesis Testing 

A “Type I” error is the significance of the test 

– Instances where we reject H0 even though it is true 

– We choose α, the level of significance – therefore we know how 
often a “Type I” error will occur 

A “Type II” error is called the power of the test 

– Where we fail to reject H0 even though it is false 

– Occurs with probability b – power of the test is 1b 

– At a given level of significance, beta depends on the standard 
error (σ/√n) 
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10. Hypothesis Testing 
– Hypothesis: statement about a popn. developed for the purpose of testing 

– Hypothesis testing: procedure based on sample evidence and probability theory to 
determine whether the hypothesis is a reasonable statement. 

– Steps: 

 1. State the null (H0 ) and alternate (HA ) hypotheses 

 Note distinction between one and two-tailed tests 

 2. State the level of significance 

 Probability of rejecting H0 when it is true (Type I Error) 

 Note: Type II Error – failing to reject H0 when it is false 

 Power of the test: 1-Pr(Type II error) 

 3. Select a test statistic 

 Based on sample information, follows a known distribution 

 4. Formulate decision rule 

 Conditions under which null hypothesis is rejected.  Based on critical value from known 
probability distribution. 

 5. Compute the value of the test statistic, make a decision, interpret the results. 
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– Example: 

 Given the sample data: 

 

 

Test the null hypothesis that the population mean is equal to zero, 
against an alternative hypothesis that the population mean is 
positive. 

  

 

8.2x  23.9s  36n
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Topic 1: Statistical Review 

10. Hypothesis Testing 

– P-value: 

 Alternative means of evaluating decision rule 

  

 Probability of observing a sample value as extreme as, or more extreme than 
the value observed when the null hypothesis is true 

• If the p-value is greater than the significance level, H0 is not rejected 

• If the p-value is less than the significance level, H0 is rejected 

  

 If the p-value is less than: 

 0.10, we have some evidence that H0 is not true 

 0.05 we have strong evidence that H0 is not true 

 0.01 we have very strong evidence that H0 is not true 
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Topic 2: The Linear Regression Model 
1. Simple Regression Model 

 

Regression analysis is concerned with the study of the dependence of one 
variable (the dependent variable) on one or more other variables (the 
explanatory variables) with a view to estimating or predicting the 
population mean – average value of the dependent variable in terms of 
the known values of the independent variables. 

 

Bivariate Example: Explaining an individual’s average wages given the 
individual’s education level. 
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1. Simple Regression Model 

 Scattergram of distribution of wages corresponding to fixed education levels 

 

 

 

 

 

 

 

 

Note: Variability in wages for each education level 

 Despite variability, average wages increase as education level increases 

 Plotting mean wage for each given education level gives the regression line 
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1. Simple Regression Model 

The population model 

• Mean of Y for a given X is known as the conditional expected value 
E(Y|X) 

   

• Note: The unconditional expected value, E(Y), is just the mean of the 
population  

  

• The population regression is the locus of the conditional means of 
the dependent variable for the fixed values of the explanatory 
variables   
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Topic 2: The Linear Regression Model 

1. Simple Regression Model  

 Scattergram of distribution of wages corresponding to fixed education levels 

 

 

 

 

 

 

 

 

Note:   Variability in wages for each education level 

 Despite variability, average wages increase as education level increases 

 Plotting mean wage for each given education level gives the regression line 
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Topic 2: The Linear Regression Model 

1. Simple Regression Model 

The population model 

Mean of Y for a given X is known as the conditional expected value E(Y|X) 

   

Note: The unconditional expected value, E(Y), is just the mean of the 
population  

  

The population regression is the locus of the conditional means of the 
dependent variable for the fixed values of the explanatory variables  

 

Population regression function: 

 E(Y|Xi) = f(Xi) 
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1. Simple Regression Model  

The population model 

Assume linear functional form: 

 E(Y|Xi) = β0+ β1Xi 

β0 : intercept term or constant 

β1: slope coefficient - quantifies the linear relationship between X and Y 

Fixed parameters known as regression coefficients 

 

For each Xi, individual observations will vary around E(Y|Xi)  
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Topic 2: The Linear Regression Model 

1. Simple Regression Model  

 Scattergram of distribution of wages corresponding to fixed education levels 

 

 

 

 

 

 

 

 

Note:   Variability in wages for each education level 

 Despite variability, average wages increase as education level increases 

 Plotting mean wage for each given education level gives the regression line 
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1. Simple Regression Model  

 Scattergram of distribution of wages corresponding to fixed education levels 

 

 

 

 

 

 

 

 

Note:   Variability in wages for each education level 

 Despite variability, average wages increase as education level increases 

 Plotting mean wage for each given education level gives the regression line 
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1. Simple Regression Model 

The population model 

Assume linear functional form: 

 E(Y|Xi) = β0+β1Xi 

β0: intercept term or constant 

β1: slope coefficient - quantifies the linear relationship between X and Y 

Fixed parameters known as regression coefficients 

For each Xi, individual observations will vary around E(Y|Xi)  

Consider deviation of any individual observation from conditional mean: 

 ui = Yi - E(Y|Xi) 

 ui : stochastic disturbance/error term – unobservable random deviation of an 
observation from its conditional mean 
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1. Simple Regression Model 

The linear regression model 

Re-arrange previous equation to get: 

 Yi = E(Y|Xi)+ ui 

Each individual observation on Y can be explained in terms of: 

• E(Y|Xi): mean Y of all individuals with same level of X – systematic or 
deterministic component of the model – the part of Y explained by X 

•   ui:  random or non-systematic component – includes all omitted 
variables that can affect Y 

 Assuming a linear functional form: 

 Yi = β0+β1Xi + ui 
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Topic 2: The Linear Regression Model 

1. Simple Regression Model 

A note on linearity: Linear in parameters vs. linear in variables 

 

The following is linear in parameters but not in variables: 

 Yi = β0+β1Xi
2 + ui 

 

In some cases transformations are required to make a model linear in 
parameters 
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1. Simple Regression Model 

The linear regression model 

 Yi = β0+β1Xi + ui 

Represents relationship between Y and X in population of data 

Using appropriate estimation techniques we use sample data to estimate 
values for β0 and β1 

β1: measures ceteris paribus effect of X on Y only if all other factors are fixed 
and do not change. 

Assume ui fixed so that Δui = 0, then 

  Δ Yi = β1 Δ Xi 

 Δ Yi /Δ Xi = β1 

Unknown ui – requires assumptions about ui to estimate ceteris paribus 
relationship 
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1. Simple Regression Model 

The linear regression model: Assumptions about the error term 

 

• Assume E(ui) =0: On average the unobservable factors that deviate an 
individual observation from the mean are zero 

 

• Assume E(ui|Xi) =0: mean of ui conditional on Xi is zero – regardless of 
what values Xi takes, the unobservables are on average zero 

  

• Zero Conditional Mean Assumption: 

 E(ui|Xi) = E(ui) = 0 
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Topic 2: The Linear Regression Model 

1. Simple Regression Model 

The linear regression model: Notes on the error term 

  

Reasons why an error term will always be required: 

• Vagueness of theory 

• Unavailability of data 

• Measurement error 

• Incorrect functional form 

• Principle of Parsimony 
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1. Simple Regression Model 

Regression vs. Correlation 

  

• Correlation analysis: measures the strength or degree of linear 
association between two random variables 

• Regression analysis: estimating the average values of one variable 
on the basis of the fixed values of the other variables for the 
purpose of prediction. 
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2. Ordinary Least Squares (OLS) Estimation 

Estimate the population relationship given by 

 

using a random sample of data i=1,….n 

Least Squares Principle: Minimise the sum of the squared deviations 
between the actual and the predicted (or fitted) values. 

Define the fitted values as  

 

OLS minimises 

Solving this optimisation problem yields: 
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Topic 2: The Linear Regression Model 
3. Properties of OLS Estimator 

 
Gauss-Markov Theorem 
  
Under the assumptions of the Classical Linear Regression Model the OLS 
estimator will be the Best Linear Unbiased Estimator 
  
Linear: estimator is a linear function of a random variable 
Unbiased:  
 
 
Best: estimator is most efficient estimator, i.e., estimator has the minimum 
variance of all linear unbiased estimators 
 
For a robust analysis our estimator must exhibit these properties 
 
 What assumptions are required? 
 

  11
ˆ bb E

  00
ˆ bb E
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Topic 2: The Linear Regression Model 
3. Properties of OLS Estimator 
It is important to remember that we use econometrics to estimate 
population relationships using sample data 
 
For each sample drawn from a population we might expect a different point 
estimate 
 
The distribution of all possible point estimates is known as the sampling 
distribution 
 
 
 
 
 
 
To determine how good an estimator is (e.g. the OLS estimator) we look at 
moments of the sampling distribution of the estimator (mean and variance) 
 

b̂

 ˆf b
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3. Properties of OLS Estimator 

Unbiasedness 

An estimator is unbiased if its expected value is equal to its true population value - 
i.e. on average the estimator is correct 

 

 

 

 ˆ ,b b

    ˆf , fb b

 ˆE b b  E b

 ˆf b  f b
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3. Properties of OLS Estimator 

Assumptions required to prove unbiasedness: 

 A1: Regression model is linear in parameters 

 A2: X are non-stochastic or fixed in repeated sampling 

 A3: Zero conditional mean 

 A4: Sample is random 

 A5: Variability in the Xs 

 

Note: Must be happy to assume that the error term is not correlated with 
any of the X variables in the model 
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3. Properties of OLS Estimator 

Efficiency 

What about the dispersion of the distribution of the estimator? 

i.e, how likely is it that the estimate is close to the true parameter? 

Useful summary measure for the dispersion in the distribution is the 
sampling variance. 

An efficient estimator is one which has the least amount of dispersion 
about its true value i.e. the one that has the smallest sampling variance 

 

 

Topic 2: Regression Models 
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3. Properties of OLS Estimator 

Assumptions required to prove efficiency: 

A6: Homoscedasticity 

 

 

  

 

   

   
2 2 2V u | X E u E u | X E u | X          f(Y|X) 

Y 

X 

E(Y|X)= β0+β1X  

X1 X2 X3 
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3. Properties of OLS Estimator 

 

Heteroscedasticity: 

 

 

  

 

   

  2

iV u | X 

f(Y|X) 

Y 

X 

E(Y|X)= β0+β1X  

X1 X2 X3 
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3. Properties of OLS Estimator 

 

Assumptions required to prove efficiency: 

 A6: Homoscedasticity 

 

 

 A7: No autocorrelation or spatial correlation  

             0||||,|,  jjiijjjiiijiji XuXuEXuEuXuEuEXXuuCov
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4. Goodness of Fit 

How well does regression line ‘fit’ the observations? 

     

  

– R2 (coefficient of determination) measures the proportion of the 
sample variance of Yi explained by the model where variation is 
measured as squared deviation from sample mean. 

 

– This measure will be bound by zero and one where there is an intercept 
in the model 
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4. Goodness of Fit 

How well does regression line ‘fit’ the observations? 

     

   

 Total Sum of Squares:   

  

 Explained Sum of Squares:    

  

 Residual Sum of Squares: 
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5. Interpretation of coefficients & units of measurement 

 
Estimate impact that average return on equity (%) has on salary of CEOs (in 
thousands of euros) 

 

β0 = 963.191  when ROE = 0, predicted salary = 963.191 

 Interpret as €963,161 

β1 = 18.501  when ROE = 1,   predicted salary = 18.501 

 Interpret as €18,501 

 

Use equation to compared predicted salaries for different ROEs, e.g. if ROE = 
20:    

              Interpret as €1,333,191 

Note: Importance of units of measurement in interpretation of results 

ii ROEarylsa 501.18191.963ˆ 

  191.333,120501.18191.963ˆ iarylsa

99 



Trinity College Dublin, The University of Dublin 
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6. Regression model with two independent variables  

Say we have information on more variables that may influence Y: 

  

  

β0 : measures the average value of Y when X1 and X2 are zero 

β1 and β2 are the partial regression coefficients/slope coefficients which measure the 
ceteris paribus effect of X1 and X2 on Y, respectively 

 Key assumption: 

This can be extended to any number of independent variables as long as the number of 
observations in the sample exceeds the number of variables 

Note – for accuracy of the estimator the number of observations should greatly exceed 
the number of variables! 

Model can be estimated using OLS in the same way as the simple regression case 

0 1 1 2 2Y X X ub b b   

 1 2 0E u | X ,X 
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Topic 2: The Linear Regression Model 

6. Regression model with two independent variables  

 

OLS slope coefficients depend on the relationship between each of the individual 
variables and Y and on the relationship between the X’s 

  

  

Where k=2,      gives the pure effect of X1 on Y, netting out the effect of X2. 

 

For example: 

      

       is the effect of education on productivity holding the quality of land constant
  

1b̂

0 1 2productivity education _ head land _ quality ub b b   

1b̂
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7. Functional Form  
 
Incorporate non-linearity into the model 
  
Regress productivity (measured in kg per ha) on years of schooling: 

 

   

  same return of β1 = 0.025 (0.025 kg per ha) for each additional year of schooling 

  

 

Regress ln(prodi) on years of schooling: 

 

  %  prodi  (100*0.074)educi 

  

0 413 0 025i i
ˆprod . . educ 

  1 02 0 074i i
ˆln prod . . educ  

Topic 2: The Linear Regression Model 
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7. Functional Form  
 
In general: 
  
1) If we estimate 

 

   

100*  lnY/X = 100* 

Percentage change in Y as a result of a one unit change in X  

 

 
2) If we estimate  

 

 lnY/lnX =   

Percentage change in Y as a result of a one unit change in X  

 

Topic 2: The Linear Regression Model 

0 1lnY X ub b  

1b̂

uXY ii  lnln 10 bb

1b̂
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8. Dummy Variables 

• Dummy variables assume 0 and 1 values and are used to indicate the 
presence of an attribute 

• For example: male or female 

 

• Categorical variables have more than one category – for example region 
(north, south, east, west) or gender (male, female) 

 

• If a qualitative variables has m categories introduce m-1 dummy variables 

 

• The excluded category is called the base category 

Example: 

 

  

 

0 1 2prod female educ ub b b   

   1 E prod | female,educ E prod | male,educb  
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Topic 2: The Linear Regression Model 
8. Dummy Variables 

Interacting dummy variables 

Interacting dummy variables is a very powerful way of understanding relevant 
variables while controlling for underlying characteristics 

Example: 

 

Holding Education constant: 

 

 Female = 0, Married = 0: average productivity of single men 

 

 Female = 0, Married = 1: average productivity of married men 

 

 Female = 1, Married = 0: average productivity of single females 

 

 Female = 1, Married = 1: average productivity of married females  

 

  

 

0 1 2 3 4prod female married female* married educ ub b b b b     

0b̂

0 2
ˆ ˆb b

0 1
ˆ ˆb b

0 1 2 3
ˆ ˆ ˆ ˆb b b b  
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Topic 2: The Linear Regression Model 

9. Model specification 

Inclusion of irrelevant variables: 

• OLS estimator unbiased but with higher variance if X’s correlated 

 

Exclusion of relevant variables: 

• Omitted variable bias if variables correlated with variables included in 
the estimated model 

• Biased and inconsistent estimates prevents causal relationship from 
being identified 
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Topic3: Statistical Inference 

Assuming u normally distributed we can say that the sampling distribution of      will 
also be normally distributed 

Assumptions about the error term can be summarized in: 

 

 

 

  

 

   

f(Y|X) 

Y 

X 

E(Y|X)= β0+β1X  

X1 X2 X3 

b̂

 20u ~ N ,

Normal distributions 
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Topic 3: Statistical Inference 

The exact sampling distribution of     will be 
 
 
 
 
 
 
 
 
 
 
 
 
Once we know the exact sampling distribution we can standardize to get a statistic 
which we know follows a standard normal distribution: 

b̂

 ˆf b

b̂

  ˆ ˆ~ N ,Varb b b

Normal distribution 

 ˆE b b
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Topic 3: Statistical Inference 
However, we need to know dispersion (variance) of sampling distribution of OLS 
estimator in order to perform statistical tests 

 

In multiple regression model:  

 

Depends on: 

 a) σ2: the error variance (reduces accuracy of estimates) 

 b)                   : variation in X (increases accuracy of estimates) 

 c) R2
k: the coefficient of determination from a regression of Xk on all other  

 independent variables (degree of multicollinearity reduces accuracy of estimates) 

What about the variance of the error terms 2? 

 Estimate using: 

 

 

 Test statistic become t-test statistic: 
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Topic 3: Statistical Inference 

Hypothesis testing about a single population parameter 

• Assume the following population model follows all CLM assumptions 

 

• OLS produces unbiased estimates but how accurate are they? 

• Test by constructing hypotheses about population parameters and using sample 
estimates and statistical theory to test whether hypotheses are true 

• In particular, we are interested in testing whether population parameters 
significantly differ from zero: 

Statistical theory tells us that the statistic:                follows a t distribution 

Which under the null is: 
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Topic 3: Statistical Inference 
Hypothesis testing about a single population parameter 

Two-sided alternative hypothesis 

 

Large positive and negative values of computed test statistic inconsistent with null 

Reject null if  

  

Example: 

 

 

 

 

 

Note: If null rejected variable is said to be ‘statistically significant’ at the chosen 
significance level  
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Topic 3: Statistical Inference 
Hypothesis testing about a single population parameter 

P-value approach: 

Given the computed t-statistic, what is the smallest significance level at which the null 
hypothesis would be rejected? 

P-values below 0.05 provide strong evidence against the null 

For two sided alternative p-value is given by: 

  

  

 Example 

 

 

 

This means that if the null hypothesis is true, we will observe an absolute value of the 
t statistic as large as 1.85 about 7.2% of the time.  
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Topic 3: Statistical Inference 
Testing hypothesis about multiple linear restrictions 

Consider the following model: 

 

  

We wish to test whether X3 , X4 and X5 should be excluded:  

 

  

Approach: 

Estimate unrestricted and restricted model 

Compare                   or R2 
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Topic 3: Statistical Inference 

Testing hypothesis about multiple linear restrictions 

Decision rule: 

Compare to critical value from F distribution with J and n-k-1 degrees of freedom. 

Reject null if F > FJ,n-k-1 

 

P-value: 

Smallest significance level at which the null hypothesis would be rejected. 

   

  

The smaller the p-value the more evidence we have against the null hypothesis 

 1,  knJFFP
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Topic 3: Statistical Inference 
Overall test for significance of the Regression 

General model: 

 

  

Test of null hypothesis that all variables except intercept insignificant:  

  

  

Test statistic: 
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Topic 3: Statistical Inference 

• Statistical inference requires that the distributional assumptions about the 
error terms hold 

• This is needed to make sure that the standard errors of the OLS estimator are 
computed correctly 

• Recall the assumptions required to prove efficiency: 

  

 A6: Homoscedasticity 

 

 

 A7: No autocorrelation or spatial correlation 
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Contact details 

• Do not hesitate to contact me in case you need further 
information/clarification.  

 

• Email: narcisog@tcd.ie 
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Lab session 

The lab session will take place in room  AP0.12   
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Thank you! 


